For our interview with an expert, our group chose to interview Dr. Jay Menitove, M.D.—President/CEO and Medical Director of the Community Blood Center here on Main Street in Kansas City, MO. Dr. Menitove completed his training in internal medicine and hematology; he eventually decided that going into blood banking would be a good complement to his training in hematology without getting involved in the oncology side. He worked on his blood banking training at the blood center in Milwaukee around the time that the AIDS pandemic was beginning in the early 1980s. Dr. Menitove and his colleagues worked closely with a lot of hemophilic patients. Around 1982 they started noticing that hemophilic children receiving commercially produced clotting factor 8 concentrates that came from donors all around the country had about a 50% chance of experiencing some immunodeficiency problems, whereas the children receiving individual blood units from the Milwaukee area were virtually not exposed to this risk. They were starting to realize there was a problem with the blood in some of these blood banks; however, since the AIDS pandemic had not really reached the Midwest yet, it wasn’t a problem in the Milwaukee blood banks at this time. Dr. Menitove became knowledgeable on the study of HIV and AIDS through his experience of working in blood banks over these years, but he also came to know a lot about the HIV blood-testing process once the blood test was created in 1985. He now works as the head of the Community Blood Center in Kansas City, which works hard to ensure that all blood donations are free of infectious agents (especially HIV) and that patients are receiving the safest blood transfusions possible.
After learning more about his experiences with HIV in the 1980s, we asked Dr. Menitove if he interacts a lot with HIV patients here in Kansas City, and he explained to us part of the blood-testing process that happens when people come in to donate blood. He explained that prior to the blood test for HIV came out in 1985, blood banks only had lists of either behaviors or groups of people who were risk factors for HIV (drug users, men who have had sex with other men). People who fell into these groups or engaged in these behaviors were asked not to donate blood, and for the most part they complied. However, when the test came out it really helped blood banks determine who had the virus and who did not; since then, the tests have gotten progressively better. The original testing for HIV was antibody testing. This is still used today, but in 1999 they added nucleic acid testing (a form of PCR testing) which tests for the RNA of the virus. Now both tests are always performed on every donor to assure that blood banks are receiving the safest blood possible. When the antibody test first came out in 1985, the window period between exposure to the virus and the ability to detect the virus in the blood was a couple of months. Since then this window period for detecting antibodies has shrunken down to 21 days after exposure; for RNA testing the window period is only 11 days after exposure. With these great improvements in our blood tests, today the risk of contracting HIV through a blood transfusion is estimated at only one out of every two million—theoretically no more than ten cases a year. In reality though, there has only been one reported case of HIV transmission through blood transfusion in the last four years, and it actually just happened in the last three or four months in the state of Missouri. This person was most likely tested during those first 11 days after exposure when the concentration of the virus is not high enough to be detected via RNA testing. He denied that he was indeed a risk factor for spreading the virus because he was a married man who had had a lot of extramarital affairs—unfortunately when they followed up on the recipients of this donor’s blood, one of them tested positive for HIV.
The next question we asked Dr. Menitove pertained to the evolution of testing for HIV. We asked, “How have the tests for HIV evolved as the virus continued to mutate?” To our surprise, Dr. Menitove explained that the tests haven’t evolved a significant amount in the past couple of years. He went on to explain that a particular section of the genome of the HIV virus is the same for every strand. Even though some strands are more resistant to treatment than others, they all still share an identical section of their genome. This allows blood banks to use the same tests without making expensive, dramatic changes to the tests that are already in place. We found it interesting that there could be several different strands of HIV, but the same testing kit could detect all. Dr Menitove is very confident in the current testing mechanisms. He explained that the current tests are very accurate for all strands of HIV today, but when we asked if these same tests would still be able to detect HIV after many mutations he said, “If it mutates significantly, that’s a risk. We could miss it.” So far though, this has not occurred—not even in response to the shift after the drug AZT started selecting for resistant strands of HIV. He said, “if drugs still [relatively] work, you have a sense of knowing that the virus has not mutated too much. If they stop working, you could have a different virus.”
Because the testing has become so accurate, Dr. Menitove said that they do not often have donors come in who test positive for HIV—only about one person per year tests positive for HIV out of the 130,000 donors at Community Blood Center. He said if people are donating blood in a more public setting (at work, university) and are embarrassed to disclose that they are a risk factor, they can call back and say not to use their blood. They try to avoid “test-seekers,” as he described them—people who abuse the altruistic system of blood donating just to get a free and confidential testing for HIV. “We do not want to be the place where people come to experiment if they’re positive,” said Dr. Menitove. This really just puts others at risk by trying to donate potentially contaminated blood to innocent people who need transfusions.
When we asked Dr. Menitove if he thought it was important for people living with HIV to know about its evolutionary history, he said, “I don’t know if knowing the history is going to get you protected from getting HIV as much as knowing how it’s transmitted is going to protect you.” This sparked some thought-provoking conversation though, as we continued to talk hypothetically about if we were diagnosed with HIV and knew about how rapidly it could change, we would be a lot more nervous knowing that treatments could become out-dated and a cure could be a long way away. We talked about how people can sometimes fall into complacency about a vaccine being developed in the near future, but really it’s a bit more unknown than other epidemics because the virus can keep mutating and evolving in response to different drug treatments.
When we asked about the evolution of treatment and testing for HIV, Dr. Menitove explained that obviously the testing has changed a lot since it came out in 1985—the window period for detection is now a lot shorter, and even more recently the test has been modified to be able to detect strains of HIV-2, a rarer relative of the rampant HIV-1. He said that they are constantly looking at the tests to see if they are still accurately picking up the antibodies; they are always aware of this evolution as they continue studying their tests and how they are working. The improvements that have been made in the last 25 years of blood testing have all been funneled toward the ideal of a zero-risk blood supply; however, Dr. Menitove explained to us how this quest is really not achievable. Modifying these tests so that there are zero risks involved would raise the cost significantly of each test—a cost that our economy could not support. “In terms of evolution, I believe it is going to evolve from a zero-risk concept to a risk-based decision making.” He said that we should be asking ourselves, what are the risks? What are the benefits? Instead of putting all these dollars toward improving our tests, can we put them toward developing a vaccine? Would doubling the cost of testing really make a difference in the one or two cases that slip through the system each year? He foresees an evolution in blood banking from putting all our money towards testing to putting money into procedures that would avoid needing transfusions in the first place.
One way that this idea has started to evolve is through pathogen-reduction technology. According to Dr. Menitove, there are developing procedures in which chemicals or UV light can be added to the blood to inactivate (or at least reduce the amount of) bacteria and viruses—even HIV—in the blood supply. This is licensed currently in European countries, but not yet in the United States. As we saw with the AIDS virus, it took a significant amount of time for a test to be developed after the virus became a problem. For all the new infectious agents that are entering our blood supply, we cannot develop tests fast enough to prevent them from becoming widespread problems. With pathogen-reduction technology, however, these agents could be killed from the start before they even have a chance to evolve and spread. Dr. Menitove thinks that this would be a great way to prevent innocent third-parties from receiving new and emerging diseases via donated blood. These procedures are not considered foolproof yet, thus the FDA cannot endorse them in the US without knowing that they are completely safe. Some are hopeful that within the next 10 years, we will see new technologies like pathogen-reduction being used in the United States.
All in all, we learned so much from our interview with Dr. Jay Menitove—not only about the history of HIV evolution and blood testing, but also about where it could be going as the virus continues to evolve. Dr. Menitove was extremely friendly and informative, and we are very thankful that he could give so freely of his time to help in our grid-computing project.
Fantastic job! He seemed extremely knowledgeable and was certainly an expert on HIV transmission. I found the idea of pathogen-reduction especially interesting and promising. Well done. Now, though you have already touched on some of these things, for the last part of the interview piece, I would like you to please answer the following questions concerning your interview:
ReplyDelete1. Describe your feelings about or response to the interview.
2. What changes occurred for you as a result of your interview?
3. Did anything about the interview disturb you?
4. Describe the connections you found between the interview and your research & classwork.
-Dr. Walker